AnnotatedFeatureProvider
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.AnnotatedFeatureProvider<Base, UnwrappedInput>.Transformer
AnnotatedFeatureProvider
public func encodeWithOptimizer(_ transformer: CreateMLComponents.AnnotatedFeatureProvider<Base, UnwrappedInput>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
AnnotatedFeatureProvider
public func makeTransformer() -> CreateMLComponents.AnnotatedFeatureProvider<Base, UnwrappedInput>.Transformer
AnnotatedFeatureProvider
public func update(_ transformer: inout CreateMLComponents.AnnotatedFeatureProvider<Base, UnwrappedInput>.Transformer, with input: TabularData.DataFrame, eventHandler: CreateMLComponents.EventHandler? = nil) async throws
AnnotatedPrediction
public static func == (a: CreateMLComponents.AnnotatedPrediction<Prediction, Annotation>, b: CreateMLComponents.AnnotatedPrediction<Prediction, Annotation>) -> Swift.Bool
AnnotatedPrediction
public func encode(to encoder: any Swift.Encoder) throws
AnnotatedPrediction
public func hash(into hasher: inout Swift.Hasher)
AugmentationSequence
public func batches(ofSize size: Swift.Int, dropsLastPartialBatch: Swift.Bool) -> CreateMLComponents.AugmentationSequence<Base, RandomTransformer, RandomNumberGenerator, Annotation>.BatchedSequence
BoostedTreeClassifier
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.TreeClassifierModel<Label>
BoostedTreeClassifier
public func encodeWithOptimizer(_ transformer: CreateMLComponents.TreeClassifierModel<Label>, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
BoostedTreeClassifier
public func makeTransformer() -> CreateMLComponents.TreeClassifierModel<Label>
BoostedTreeClassifier
public func update(_ transformer: inout CreateMLComponents.TreeClassifierModel<Label>, with input: TabularData.DataFrame, eventHandler: CreateMLComponents.EventHandler?) async throws
BoostedTreeRegressor
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.TreeRegressorModel
BoostedTreeRegressor
public func encodeWithOptimizer(_ transformer: CreateMLComponents.TreeRegressorModel, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
BoostedTreeRegressor
public func makeTransformer() -> CreateMLComponents.TreeRegressorModel
BoostedTreeRegressor
public func update(_ transformer: inout CreateMLComponents.TreeRegressorModel, with input: TabularData.DataFrame, eventHandler: CreateMLComponents.EventHandler?) async throws
ClassificationMetrics
public mutating func add(predicted: some Sequence<Label>, groundTruth: some Sequence<Label>)
ClassificationMetrics
public mutating func add(_ pairs: some Sequence<(predicted: Label, label: Label)>)
ClassificationMetrics
public func count(label: Label) -> Swift.Int
ClassificationMetrics
public func count(predicted: Label) -> Swift.Int
ClassificationMetrics
public func count(predicted: Label, label: Label) -> Swift.Int
ClassificationMetrics
public func f1Score(label: Label) -> Swift.Double
ClassificationMetrics
public func falseNegativeCount(of label: Label) -> Swift.Int
ClassificationMetrics
public func falsePositiveCount(of label: Label) -> Swift.Int
ClassificationMetrics
public func mapLabels<T>(_ transform: (Label) throws -> T) rethrows -> CreateMLComponents.ClassificationMetrics<T> where T : Swift.Hashable
ClassificationMetrics
public func trueNegativeCount(of label: Label) -> Swift.Int
ClassificationMetrics
public func truePositiveCount(of label: Label) -> Swift.Int
ColumnSelector
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.ColumnSelector<Estimator, UnwrappedInput>.Transformer
ColumnSelector
public func encodeWithOptimizer(_ transformer: CreateMLComponents.ColumnSelector<Estimator, UnwrappedInput>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
ColumnSelector
public func makeTransformer() -> CreateMLComponents.ColumnSelectorTransformer<Estimator.Transformer, UnwrappedInput>
ColumnSelector
public func update(_ transformer: inout CreateMLComponents.ColumnSelector<Estimator, UnwrappedInput>.Transformer, with input: TabularData.DataFrame, eventHandler: CreateMLComponents.EventHandler? = nil) async throws
DetectedObject
public func encode(to encoder: any Swift.Encoder) throws
FullyConnectedNetworkMultiLabelClassifier
public func decode(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.FullyConnectedNetworkMultiLabelClassifierModel<Scalar, Label>
FullyConnectedNetworkMultiLabelClassifier
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.FullyConnectedNetworkMultiLabelClassifier<Scalar, Label>.Transformer
FullyConnectedNetworkMultiLabelClassifier
public func encodeWithOptimizer(_ transformer: CreateMLComponents.FullyConnectedNetworkMultiLabelClassifier<Scalar, Label>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
FullyConnectedNetworkMultiLabelClassifier
public func makeTransformer() -> CreateMLComponents.FullyConnectedNetworkMultiLabelClassifierModel<Scalar, Label>
FullyConnectedNetworkMultiLabelClassifier
public func update<InputSequence>(_ transformer: inout CreateMLComponents.FullyConnectedNetworkMultiLabelClassifierModel<Scalar, Label>, with input: InputSequence, eventHandler: CreateMLComponents.EventHandler? = nil) async throws where InputSequence : Swift.Sequence, InputSequence.Element == CreateMLComponents.AnnotatedFeature<CoreML.MLShapedArray<Scalar>, Swift.Set<Label>>
FullyConnectedNetworkMultiLabelClassifierModel
public func encode(to encoder: any Swift.Encoder) throws
FullyConnectedNetworkMultiLabelClassifierModel
public func evaluation(on input: some Collection<AnnotatedFeature<Input, Set<Label>>>, confidenceThresholds: [Label : Swift.Float]) throws -> CreateMLComponents.MultiLabelClassificationMetrics<Label>
JointPoint
public static func == (a: CreateMLComponents.JointPoint, b: CreateMLComponents.JointPoint) -> Swift.Bool
LinearRegressor
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.LinearRegressorModel<Scalar>
LinearRegressor
public func encodeWithOptimizer(_ transformer: CreateMLComponents.LinearRegressorModel<Scalar>, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
LinearRegressor
public func makeTransformer() -> CreateMLComponents.LinearRegressorModel<Scalar>
LinearRegressor
public func update<InputSequence>(_ transformer: inout CreateMLComponents.LinearRegressor<Scalar>.Transformer, with input: InputSequence, eventHandler: CreateMLComponents.EventHandler?) async throws where InputSequence : Swift.Sequence, InputSequence.Element == CreateMLComponents.AnnotatedFeature<CoreML.MLShapedArray<Scalar>, Scalar>
LogisticRegressionClassifier
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.LogisticRegressionClassifier<Scalar, Label>.Transformer
LogisticRegressionClassifier
public func encodeWithOptimizer(_ transformer: CreateMLComponents.LogisticRegressionClassifier<Scalar, Label>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
LogisticRegressionClassifier
public func makeTransformer() -> CreateMLComponents.LogisticRegressionClassifier<Scalar, Label>.Transformer
LogisticRegressionClassifier
public func update<InputSequence>(_ transformer: inout CreateMLComponents.LogisticRegressionClassifier<Scalar, Label>.Transformer, with input: InputSequence, eventHandler: CreateMLComponents.EventHandler?) async throws where InputSequence : Swift.Sequence, InputSequence.Element == CreateMLComponents.AnnotatedFeature<CoreML.MLShapedArray<Scalar>, Label>
MultiLabelClassificationMetrics.ThresholdSelectionStrategy
public func encode(to encoder: any Swift.Encoder) throws
MultiLabelClassificationMetrics
public mutating func add(classifications: some Sequence<ClassificationDistribution<Label>>, groundTruth: some Sequence<Set<Label>>)
MultiLabelClassificationMetrics
public mutating func add(_ pairs: some Sequence<(classification: ClassificationDistribution<Label>, labels: Set<Label>)>)
MultiLabelClassificationMetrics
public func count(of label: Label) -> Swift.Int
MultiLabelClassificationMetrics
public func f1Score(for label: Label) -> Swift.Float
MultiLabelClassificationMetrics
public func falseNegativeCount(of label: Label) -> Swift.Int
MultiLabelClassificationMetrics
public func falsePositiveCount(of label: Label) -> Swift.Int
MultiLabelClassificationMetrics
public static func meanAveragePrecisionScore(classifications: some Sequence<ClassificationDistribution<Label>>, groundTruth: some Sequence<Set<Label>>, labels: Swift.Set<Label>) -> Swift.Float
MultiLabelClassificationMetrics
public static func meanAveragePrecisionScore(classifications: some Sequence<ClassificationDistribution<Label>>, groundTruth: some Sequence<Set<Label>>) -> Swift.Float
MultiLabelClassificationMetrics
public static func meanAveragePrecisionScore(_ pairs: some Sequence<(classification: ClassificationDistribution<Label>, labels: Set<Label>)>, labels: Swift.Set<Label>) -> Swift.Float
MultiLabelClassificationMetrics
public static func meanAveragePrecisionScore(_ pairs: some Sequence<(classification: ClassificationDistribution<Label>, labels: Set<Label>)>) -> Swift.Float
MultiLabelClassificationMetrics
public func precisionScore(for label: Label) -> Swift.Float
MultiLabelClassificationMetrics
public func recallScore(for label: Label) -> Swift.Float
MultiLabelClassificationMetrics
public func trueNegativeCount(of label: Label) -> Swift.Int
MultiLabelClassificationMetrics
public func truePositiveCount(of label: Label) -> Swift.Int
NumericImputer
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.NumericImputer<Element>.Transformer
NumericImputer
public func encodeWithOptimizer(_ transformer: CreateMLComponents.NumericImputer<Element>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
NumericImputer
public func makeTransformer() -> CreateMLComponents.NumericImputer<Element>.Transformer
NumericImputer
public func update(_ transformer: inout CreateMLComponents.ImputeTransformer<Element>, with input: some Sequence<Element?>, eventHandler: CreateMLComponents.EventHandler? = nil) throws
OneHotEncoder
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.OneHotEncoder<Category>.Transformer
OneHotEncoder
public func encodeWithOptimizer(_ transformer: CreateMLComponents.OneHotEncoder<Category>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
OneHotEncoder
public func makeTransformer() -> CreateMLComponents.OneHotEncoder<Category>.Transformer
OneHotEncoder
public func update(_ transformer: inout CreateMLComponents.OneHotEncoder<Category>.Transformer, with input: some Sequence<Category?>, eventHandler: CreateMLComponents.EventHandler? = nil) throws
OrdinalEncoder
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.OrdinalEncoder<Category>.Transformer
OrdinalEncoder
public func encodeWithOptimizer(_ transformer: CreateMLComponents.OrdinalEncoder<Category>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
OrdinalEncoder
public func makeTransformer() -> CreateMLComponents.OrdinalEncoder<Category>.Transformer
OrdinalEncoder
public func update(_ transformer: inout CreateMLComponents.OrdinalEncoder<Category>.Transformer, with input: some Sequence<Category?>, eventHandler: CreateMLComponents.EventHandler? = nil) throws
Pose
public static func == (a: CreateMLComponents.Pose, b: CreateMLComponents.Pose) -> Swift.Bool
Pose
public func encode(to encoder: any Swift.Encoder) throws
StandardScaler
public func decodeWithOptimizer(from decoder: inout any CreateMLComponents.EstimatorDecoder) throws -> CreateMLComponents.StandardScaler<Element>.Transformer
StandardScaler
public func encodeWithOptimizer(_ transformer: CreateMLComponents.StandardScaler<Element>.Transformer, to encoder: inout any CreateMLComponents.EstimatorEncoder) throws
StandardScaler
public func makeTransformer() -> CreateMLComponents.StandardScaler<Element>.Transformer
StandardScaler
public func update(_ transformer: inout CreateMLComponents.StandardScaler<Element>.Transformer, with input: some Sequence<Element>, eventHandler: CreateMLComponents.EventHandler? = nil)
SupervisedEstimator
public func fitted<Input>(to input: Input, eventHandler: CreateMLComponents.EventHandler?) async throws -> Self.Transformer where Input : _Concurrency.AsyncSequence, Input.Element == CreateMLComponents.AnnotatedFeature<Self.Transformer.Input, Self.Annotation>
SupervisedEstimator
public func fitted<Input, Validation>(to input: Input, validateOn validation: Validation, eventHandler: CreateMLComponents.EventHandler?) async throws -> Self.Transformer where Input : _Concurrency.AsyncSequence, Validation : Swift.Sequence, Input.Element == CreateMLComponents.AnnotatedFeature<Self.Transformer.Input, Self.Annotation>, Validation.Element == CreateMLComponents.AnnotatedFeature<Self.Transformer.Input, Self.Annotation>
TabularTransformer
public func appending<Other>(_ other: Other) -> CreateMLComponents.PreprocessingUpdatableTabularEstimator<Self, Other> where Other : CreateMLComponents.UpdatableTabularEstimator
TabularTransformer
public func appending<Other>(_ other: Other) -> CreateMLComponents.PreprocessingUpdatableSupervisedTabularEstimator<Self, Other> where Other : CreateMLComponents.UpdatableSupervisedTabularEstimator
TabularTransformer
public func appending<Other>(_ other: Other) -> CreateMLComponents.PreprocessingSupervisedTabularEstimator<Self, Other> where Other : CreateMLComponents.SupervisedTabularEstimator
TabularTransformer
public func appending<Other>(_ other: Other) -> CreateMLComponents.PreprocessingTabularEstimator<Self, Other> where Other : CreateMLComponents.TabularEstimator
TabularTransformer
public func export(to url: Foundation.URL, metadata: CreateMLComponents.ModelMetadata) throws
TemporalTransformer
public func export(to url: Foundation.URL, metadata: CreateMLComponents.ModelMetadata) throws
Transformer
public func adaptedAsAnnotatedFeatureTransformer<Annotation>(annotationType: Annotation.Type = Annotation.self) -> some CreateMLComponents.Transformer<CreateMLComponents.AnnotatedFeature<Self.Input, Annotation>, CreateMLComponents.AnnotatedFeature<Self.Output, Annotation>>
Transformer
public func adaptedAsAnnotatedPredictionTransformer<Annotation>(annotationType: Annotation.Type = Annotation.self) -> some CreateMLComponents.Transformer<CreateMLComponents.AnnotatedPrediction<Self.Input, Annotation>, CreateMLComponents.AnnotatedPrediction<Self.Output, Annotation>>
Transformer
public func adaptedAsRandomTransformer() -> some CreateMLComponents.RandomTransformer<Self.Input, Self.Output>
Transformer
public func appending<Other, Annotation>(_ other: Other) -> some CreateMLComponents.Transformer<CreateMLComponents.AnnotatedFeature<Self.Input, Annotation>, Other.Output> where Other : CreateMLComponents.Transformer, Other.Input == CreateMLComponents.AnnotatedFeature<Self.Output, Annotation>
Transformer
public func appending<Other, Annotation>(_ other: Other) -> some CreateMLComponents.Transformer<Self.Input, CreateMLComponents.AnnotatedFeature<Other.Output, Annotation>> where Other : CreateMLComponents.Transformer, Self.Output == CreateMLComponents.AnnotatedFeature<Other.Input, Annotation>
Transformer
public func appending<Other, Annotation>(_ other: Other) -> some CreateMLComponents.Transformer<CreateMLComponents.AnnotatedPrediction<Self.Input, Annotation>, Other.Output> where Other : CreateMLComponents.Transformer, Other.Input == CreateMLComponents.AnnotatedPrediction<Self.Output, Annotation>
Transformer
public func appending<Other, Annotation>(_ other: Other) -> some CreateMLComponents.Transformer<Self.Input, CreateMLComponents.AnnotatedPrediction<Other.Output, Annotation>> where Other : CreateMLComponents.Transformer, Self.Output == CreateMLComponents.AnnotatedPrediction<Other.Input, Annotation>
Transformer
public func export(to url: Foundation.URL, metadata: CreateMLComponents.ModelMetadata) throws
Transformer
public func prediction<S, Annotation>(from input: S, eventHandler: CreateMLComponents.EventHandler? = nil) async throws -> [CreateMLComponents.AnnotatedPrediction<Self.Output, Annotation>] where S : Swift.Sequence, S.Element == CreateMLComponents.AnnotatedFeature<Self.Input, Annotation>
UpdatableSupervisedEstimator
public func update<Input>(_ transformer: inout Self.Transformer, with input: Input, eventHandler: CreateMLComponents.EventHandler? = nil) async throws where Input : _Concurrency.AsyncSequence, Input.Element == CreateMLComponents.AnnotatedFeature<Self.Transformer.Input, Self.Annotation>
internal func absoluteError<T>(_ annotatedPrediction: CreateMLComponents.AnnotatedPrediction<T, T>) -> T where T : Swift.FloatingPoint
public func maximumAbsoluteError<T>(_ annotatedPredictions: [CreateMLComponents.AnnotatedPrediction<T, T>]) -> T where T : Swift.FloatingPoint
public func meanAbsoluteError<T>(_ annotatedPredictions: [CreateMLComponents.AnnotatedPrediction<T, T>]) -> T where T : Swift.FloatingPoint
public func meanAbsolutePercentageError<T>(_ annotatedPredictions: [CreateMLComponents.AnnotatedPrediction<T, T>]) -> T where T : Swift.FloatingPoint
@backDeployed(before: macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0)public func meanSquaredError<T>(_ annotatedPredictions: [CreateMLComponents.AnnotatedPrediction<T, T>]) -> T where T : Swift.FloatingPoint
public func rootMeanSquaredError<T>(_ annotatedPredictions: [CreateMLComponents.AnnotatedPrediction<T, T>]) -> T where T : Swift.FloatingPoint